9 research outputs found

    Data-Link: High Fidelity Manufacturing Datasets for Model2Real Transfer under Industrial Settings

    Full text link
    High-fidelity datasets play a pivotal role in imbuing simulators with realism, enabling the benchmarking of various state-of-the-art deep inference models. These models are particularly instrumental in tasks such as semantic segmentation, classification, and localization. This study showcases the efficacy of a customized manufacturing dataset comprising 60 classes in the creation of a high-fidelity digital twin of a robotic manipulation environment. By leveraging the concept of transfer learning, different 6D pose estimation models are trained within the simulated environment using domain randomization and subsequently tested on real-world objects to assess domain adaptation. To ascertain the effectiveness and realism of the created data-set, pose accuracy and mean absolute error (MAE) metrics are reported to quantify the model2real gap.Comment: RSS 202

    Vision Based Adaptation to Kernelized Synergies for Human Inspired Robotic Manipulation

    Get PDF
    Humans in contrast to robots are excellent in performing fine manipulation tasks owing to their remarkable dexterity and sensorimotor organization. Enabling robots to acquire such capabilities, necessitates a framework that not only replicates the human behaviour but also integrates the multi-sensory information for autonomous object interaction. To address such limitations, this research proposes to augment the previously developed kernelized synergies framework with visual perception to automatically adapt to the unknown objects. The kernelized synergies, inspired from humans, retain the same reduced subspace for object grasping and manipulation. To detect object in the scene, a simplified perception pipeline is used that leverages the RANSAC algorithm with Euclidean clustering and SVM for object segmentation and recognition respectively. Further, the comparative analysis of kernelized synergies with other state of art approaches is made to confirm their flexibility and effectiveness on the robotic manipulation tasks. The experiments conducted on the robot hand confirm the robustness of modified kernelized synergies framework against the uncertainties related to the perception of environment

    Protection Coordination of Properly Sized and Placed Distributed Generations–Methods, Applications and Future Scope

    No full text
    The radial distribution networks are designed for unidirectional power flows and are passive in nature. However, with the penetration of Distributed Generation (DG), the power flow becomes bidirectional and the network becomes active. The integration of DGs into distribution network creates many issues with: system stability, protection coordination, power quality, islanding, proper placement and sizing etc. Among these issues, the two most significant are optimal sizing and placement of DGs and their protection coordination in utility network. The proper coordination of relays with high penetration of DGs placed at optimal location increases the availability and reliability of the network during abnormal operating conditions. This research addresses most of the available methods for efficient sizing and placement of DGs in distribution system (numerical, analytical and heuristic) as well as the developed protection coordination techniques for utility networks in the presence of DGs (Artificial Intelligence (AI), adaptive and non-adaptive, multi-agent, hybrid). This paper indicates the possible research gaps and highlights the applications possibilities and methods’ limitations in the area of DGs

    Analysis and Mitigation of Shunt Capacitor Bank Switching Transients on 132 kV Grid Station, Qasimabad Hyderabad

    No full text
    In this paper analysis and mitigation methods of capacitor bank switching transients on 132KV Grid station, Qasimabad Hyderabad are simulated through the MATLAB software (Matrix Laboratory). Analysis of transients with and without capacitor bank is made. Mathematical measurements of quantities such as transient voltages and inrush currents for each case are discussed. Reasons for these transients, their impact on utility and customer systems and their mitigation are provided

    On Mitigating the Effects of Multipath on GNSS Using Environmental Context Detection

    No full text
    Accurate, ubiquitous and reliable navigation can make transportation systems (road, rail, air and marine) more efficient, safer and more sustainable by enabling path planning, route optimization and fuel economy optimization. However, accurate navigation in urban contexts has always been a challenging task due to significant chances of signal blockage and multipath and non-line-of-sight (NLOS) signal reception. This paper presents a detailed study on environmental context detection using GNSS signals and its utilization in mitigating multipath effects by devising a context-aware navigation (CAN) algorithm that detects and characterizes the working environment of a GNSS receiver and applies the desired mitigation strategy accordingly. The CAN algorithm utilizes GNSS measurement variables to categorize the environment into standard, degraded and highly degraded classes and then updates the receiver’s tracking-loop parameters based on the inferred environment. This allows the receiver to adaptively mitigate the effects of multipath/NLOS, which inherently depend upon the type of environment. To validate the functionality and potential of the proposed CAN algorithm, a detailed study on the performance of a multi-GNSS receiver in the quad-constellation mode, i.e., GPS, BeiDou, Galileo and GLONASS, is conducted in this research by traversing an instrumented vehicle around an urban city and acquiring respective GNSS signals in different environments. The performance of a CAN-enabled GNSS receiver is compared with a standard receiver using fundamental quality indicators of GNSS. The experimental results show that the proposed CAN algorithm is a good contributor for improving GNSS performance by anticipating the potential degradation and initiating an adaptive mitigation strategy. The CAN-enabled GNSS receiver achieved a lane-level accuracy of less than 2 m for 53% of the total experimental time-slot in a highly degraded environment, which was previously only 32% when not using the proposed CAN

    Novel Protection Coordination Scheme for Active Distribution Networks

    No full text
    Distribution networks are inherently radial and passive owing to the ease of operation and unidirectional power flow. Proper installation of Distributed Generators, on the one hand, makes the utility network active and mitigates certain power quality issues e.g., voltage dips, frequency deviations, losses, etc., but on the other hand, it disturbs the optimal coordination among existing protection devices e.g., over-current relays. In order to maintain the desired selectivity level, such that the primary and backup relays are synchronized against different contingencies, it necessitates design of intelligent and promising protection schemes to distinguish between the upstream and downstream power flows. This research proposes exploiting phase angle jump, an overlooked voltage sag parameter, to add directional element to digital over-current relays with inverse time characteristics. The decision on the direction of current is made on the basis of polarity of phase angle jump together with the impedance angle of the system. The proposed scheme at first is evaluated on a test system in a simulated environment under symmetrical and unsymmetrical faults and, secondly, as a proof of the concept, it is verified in real-time on a laboratory setup using a Power Hardware-in-loop (PHIL) system. Moreover, a comparative analysis is made with other state-of-the-art techniques to evaluate the performance and robustness of the proposed approach
    corecore